INTEX - NA Meteorological Overview

Henry Fuelberg
Chris Kiley
Danielle Morse
Michael Porter

Outline

- Describe meteorological conditions during INTEX
- Assess representativeness of INTEX period
- Examine interesting scenarios
 - Extensive lightning
 - Asian pollution
 - -- Alaskan fires
 - -- Transport to Europe (Lagrangian experiment)

Surface Pressure

2004 46-day Mean

Climatology

Animation of Sea Level Pressure

July 1-6 – California flights July 7-15 – Mid America I flights July 16-Aug 11 – Pease flights Pause July 28 – North Atlantic flight Pause July 31 – Bermuda high flight August 12-15 – Mid America II flights and return to Dryden

Surface Pressure - CA

Surface Pressure - STL

St Louis

1860 1802 1804 1886 1888 1810 1812 1814 1818 1818 1826 1822 1824 1826 1828 1838

Surface Pressure - NH

BON

55N

50N

45N

40M

35N:

30N

25N ·

20N-

12DW

110W

100W

3DW

2000

าต์พ.

4CW

oáw.

BÓW.

SEA LEVEL PRESSSUE (mb) 01-DAY MEAN FOR: Fri JUL 16 2004

70W

NCEP OPERATIONAL DATASET

1880 1002 1804 1086 1008 1810 1012 1B14 1016 1018 1826 1022 1824 1026 1028 183B

80W

Surface Pressure - STL

St Louis

NCEP OPERATIONAL DATASET

1000 1002 1004 1006 1008 1010 1012 1014 1016 1018 1026 1022 1024 1026 1028 1030

Contrasting Weather Patterns

Strongest High – Aug 7 00Z

Deepest Low – Aug 10 12Z

GOES-8 IR Imagery

Lightning Composite Entire INTEX Period

Frontal Statistics

A frontal passage can produce much convection, whereas a high pressure area can suppress convection.

July	Number of Fronts Passing NE US	Average Time Between Fronts
2000	3	7 days
2001	4	8 days
2002	6	5.2 days
2003	6	3.8 days
2004	5	5.3 days

Days With Closed High Affecting Northeast During INTEX Period

- 2000 13 days
- 2001 14 days
- 2002 14 days
- 2003 8 days
- 2004 10 days

No stagnant highs over northeast!

500 mb Heights

2004 46-day Mean

Climatology

500 mb Heights - CA

500mb GEOPOTENTIAL HEIGHTS (dom) - D1-DAY MEAN FOR: Thu JUL 01 2004

500 mb Heights - STL

500mb GEOPOTENTIAL HEIGHTS (dam) Wad JUL 07 2004

D1-DAY MEAN FOR:

500 mb Heights - NH

500mb GEOPOTENTIAL HEIGHTS (dom) Fri JUL 16 2004

D1-DAY MEAN FOR:

500 mb Heights - STL

500mb GEOPOTENTIAL HEIGHTS (dom) 01—DAY MEAN FOR: Thu AUG 12 2004

2004 vs 2003 & 2002 500 mb

2003

2004

2002

Strong Alaskan Ridge

Jul 1 – Aug 15 2004

Anomaly

300 mb Winds

2004 46-day Mean

Climatology

4 5 7 8 9 10 12 13 14 15 17 18 19 20 22

300 mb Winds - CA

300 mb Winds - STL

300 mb Winds - NH

300 mb Winds - STL

700 mb Winds

2004 46-day Mean

Climatology

Case Studies

Lightning

Asian Pollution

Alaskan Fires

Flow to Europe (Lagrangian Experiments)

Lightning Composite Entire INTEX Period

July 12 Flight

Asian Pollution – August 2 Note flight legs

300 mb Winds July 24 – Aug. 2

2004

Back Trajectories from Aug. 2

Alaskan Fires

Alaskan Fires

Lagrangian to Europe--300 mb Winds

2004 46-day Mean

Climatology

Lagrangian to Europe 300 mb Winds

Lagrangian Case Forward Trajectories

850 mb Winds

2004 46-day Mean

Climatology

Conclusions

- INTEX-A mostly representative of climatology
- But, a persistent trof along the East Coast
- Frontal passages on the "high" end of normal
- No stagnant high pressure centers over NE
- Hot and dry over Alaska→ record fires
- TransPacific flow sometimes conducive to long range transport to central/eastern U.S.
- TransAtlantic sometimes conducive to European transport, but farther south than usual

Our Goal is to Assist You

- Our web site contains met. data about each flight, e.g., trajectories, flow patterns, etc.
- We are happy to help you apply meteorology to your own research
- If we do not have the product you need, we will make it for you
- Just let us know!!

